An algorithm for the decomposition of semisimple Lie algebras

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Algorithm for the Decomposition of Semisimple Lie Algebras

We consider the problem of decomposing a semisimple Lie algebra deened over a eld of characteristic zero as a direct sum of its simple ideals. The method is based on the decomposition of the action of a Cartan subalgebra. An implementation of the algorithm in the system ELIAS is discussed at the end of the paper.

متن کامل

Semisimple Lie Algebras and the Root Space Decomposition

That it is a Lie homomorphism is precisely the statement of the Jacobi identity. Another exact restatement of the Jacobi identity is contained in the fact that ad takes values in the subalgebra Der(g) of derivations. The notion of a Lie algebra is meant to be an abstraction of the additive commutators of associative algebras. While lie algebras are almost never associative as algebras, they hav...

متن کامل

Small Semisimple Subalgebras of Semisimple Lie Algebras

The goal of Section 2 is to provide a proof of Theorem 2.0.1. Section 3 introduces the necessary facts about Lie algebras and representation theory, with the goal being the proof of Proposition 3.5.7 (ultimately as an application of Theorem 2.0.1), and Proposition 3.3.1. In Section 4 we prove the main theorem, using Propositions 3.3.1 and 3.5.7. In Section 5, we apply the theorem to the special...

متن کامل

Representations of Semisimple Lie Algebras

Let L be a finite-dimensional, semisimple Lie algebra over an algebraically closed field k of characteristic 0. Let H be a fixed Cartan subalgebra of L, and Φ be the root system. Fix a base ∆ = {α1, · · · , αl} of Φ. Let Λ denote the set of dominant, integral linear functions on H. Theorem 0.1. There is a one-to-one correspondence Λ ∼ −→ {isomorphism classes of finite-dimensional irreducible L-...

متن کامل

Classification of semisimple Lie algebras

Furthermore h was diagonalisable in every irreducible representation and H := Span(h) is obviously an abelian subalgebra. Note that h = h + 0 is the abstract Jordan decomposition of h, that H = CL(H) is the weight space of H , acting on L with the adjoint action, corresponding to the weight 0 ∈ H . Likewise, Span(e) is the weight space for the weight c · h 7→ −2c for c ∈ C, and Span( f ) is the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1997

ISSN: 0304-3975

DOI: 10.1016/s0304-3975(97)00060-1